PMID- 7814445 OWN - NLM STAT- MEDLINE DCOM- 19950203 LR - 20081121 IS - 0021-9541 (Print) IS - 0021-9541 (Linking) VI - 162 IP - 1 DP - 1995 Jan TI - Interferon-gamma exerts its negative regulatory effect primarily on the earliest stages of murine erythroid progenitor cell development. PG - 134-8 AB - Interferon-gamma (INF-gamma) has been shown to suppress erythropoiesis and perhaps to contribute to the anemia of chronic disease. In this study we demonstrated that the concentration of INF gamma required to suppress murine burst forming unit-erythroid (BFU-E) growth was significantly less than that required to suppress colony forming unit-erythroid (CFU-E) growth. INF gamma acted at the most primitive step in erythroid progenitor cell differentiation and proliferation, as inhibition was maximal when added at the time of BFU-E culture initiation. Inhibition was progressively less if INF gamma addition was delayed after culture initiation. The effects of INF gamma on BFU-E did not require the presence of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor-alpha (TNF alpha), or granulocyte macrophage colony stimulating factor (GM-CSF), as its effects were not neutralized by monoclonal antibodies against IL-1 alpha, TNF alpha, or GM-CSF. This applied whether INF gamma was added to culture with individual antibodies or with a combination of all three antibodies. INF gamma was not required for IL-1 alpha- or TNF alpha-induced suppression of BFU-E, as their effects were not neutralized by a monoclonal anti-INF gamma antibody. In contrast, GM-CSF-induced suppression of BFU-E was negated by the simultaneous addition of anti-INF gamma. We have previously shown that the addition of TNF alpha does not suppress BFU-E growth in cultures from marrow depleted of macrophages. Suppression did occur, however, if a small concentration of INF gamma that does not inhibit and increasing concentration of TNF alpha were added to culture, suggesting a synergistic effect between INF-gamma and TNF alpha. These observations suggest that INF gamma is a potent direct inhibitor of erythroid colony growth in vitro. It exerts its negative regulatory effect primarily on the earliest stages of erythroid progenitor cell differentiation and proliferation, as much higher doses are required to suppress late erythroid cell development. INF gamma is also involved in GM-CSF-induced inhibition of BFU-E colony growth. FAU - Wang, C Q AU - Wang CQ AD - Geriatric Research Education and Clinical Center (GRECC), John L. McClellan Memorial Veterans Hospital, Little Rock, Arkansas 72205. FAU - Udupa, K B AU - Udupa KB FAU - Lipschitz, D A AU - Lipschitz DA LA - eng GR - R01-AG 09458/AG/NIA NIH HHS/United States PT - Journal Article PT - Research Support, Non-U.S. Gov't PT - Research Support, U.S. Gov't, Non-P.H.S. PT - Research Support, U.S. Gov't, P.H.S. PL - United States TA - J Cell Physiol JT - Journal of cellular physiology JID - 0050222 RN - 0 (Antibodies) RN - 0 (Interleukin-1) RN - 0 (Tumor Necrosis Factor-alpha) RN - 82115-62-6 (Interferon-gamma) RN - 83869-56-1 (Granulocyte-Macrophage Colony-Stimulating Factor) SB - IM MH - Animals MH - Antibodies/analysis/immunology/pharmacology MH - Cell Differentiation/drug effects/physiology MH - Cell Division/drug effects/physiology MH - Cells, Cultured MH - Dose-Response Relationship, Drug MH - Drug Synergism MH - Erythroid Precursor Cells/*cytology/drug effects/physiology MH - Female MH - Granulocyte-Macrophage Colony-Stimulating Factor/immunology/pharmacology/physiology MH - Interferon-gamma/*pharmacology MH - Interleukin-1/immunology/pharmacology/physiology MH - Mice MH - Mice, Inbred C57BL MH - Tumor Necrosis Factor-alpha/immunology/pharmacology/physiology EDAT- 1995/01/01 00:00 MHDA- 1995/01/01 00:01 CRDT- 1995/01/01 00:00 PHST- 1995/01/01 00:00 [pubmed] PHST- 1995/01/01 00:01 [medline] PHST- 1995/01/01 00:00 [entrez] AID - 10.1002/jcp.1041620116 [doi] PST - ppublish SO - J Cell Physiol. 1995 Jan;162(1):134-8. doi: 10.1002/jcp.1041620116.