PMID- 8639605 OWN - NLM STAT- MEDLINE DCOM- 19960717 LR - 20161019 IS - 0006-2960 (Print) IS - 0006-2960 (Linking) VI - 35 IP - 21 DP - 1996 May 28 TI - Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. PG - 6569-84 AB - A full high-resolution three-dimensional solution structure of the monocyte chemoattractant protein-1 (MCP-1 or MCAF) homodimer has been determined by heteronuclear multidimensional NMR. MCP-1 is a member of a family of small proteins which play a crucial role in immune surveillance by orchestrating the recruitment of specific leukocytes to areas of immune challenge. The protein was uniformly isotopically enriched with 13C and 15N by expression in Escherichia coli, and complete sequence-specific resonance assignments were obtained by a combination of heteronuclear double- and triple-resonance experiments. The secondary structure was deduced from characteristic patterns of NOEs, 13 C alpha/beta chemical shifts, measurements of 3JHNH alpha scalar couplings, and patterns of slowly exchanging amide protons. Because MCP-1 forms symmetrical homodimers, additional experiments were carried out to unambiguously establish the quaternary contacts. NOEs from these novel experiments were merged with more traditional heteronuclear separated NOE measurements in an iterative strategy to partition the restraints between explicit inter/intrasubunit contacts and a class wherein both were retained as ambiguous. With more than 30 restraints per residue, the three-dimensional structure is well-defined with a backbone rmsd of 0.37 A to the mean over residues 5-69 of the dimer. We compare the structure with those recently reported for the related chemokines MIP-1 beta and RANTES and highlight the differences in terms of receptor specificity and function as well as interpret the known biological activity data of MCP-1 mutants. FAU - Handel, T M AU - Handel TM AD - Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA. FAU - Domaille, P J AU - Domaille PJ LA - eng GR - R01 AI037113/AI/NIAID NIH HHS/United States GR - AI 37113/AI/NIAID NIH HHS/United States PT - Comparative Study PT - Journal Article PT - Research Support, U.S. Gov't, P.H.S. PL - United States TA - Biochemistry JT - Biochemistry JID - 0370623 RN - 0 (Carbon Isotopes) RN - 0 (Chemokine CCL2) RN - 0 (Chemokine CCL4) RN - 0 (Chemokine CCL5) RN - 0 (Macromolecular Substances) RN - 0 (Macrophage Inflammatory Proteins) RN - 0 (Monokines) RN - 0 (Nitrogen Isotopes) RN - 0 (Recombinant Proteins) RN - 0 (Solutions) RN - 7YNJ3PO35Z (Hydrogen) SB - IM MH - Amino Acid Sequence MH - Carbon Isotopes MH - Chemokine CCL2/*chemistry MH - Chemokine CCL4 MH - Chemokine CCL5/chemistry MH - Computer Graphics MH - Escherichia coli MH - Hydrogen MH - Macromolecular Substances MH - Macrophage Inflammatory Proteins MH - Magnetic Resonance Spectroscopy/methods MH - Models, Molecular MH - Molecular Sequence Data MH - Monokines/chemistry MH - Nitrogen Isotopes MH - *Protein Structure, Secondary MH - Recombinant Proteins/chemistry MH - Software MH - Solutions EDAT- 1996/05/28 00:00 MHDA- 1996/05/28 00:01 CRDT- 1996/05/28 00:00 PHST- 1996/05/28 00:00 [pubmed] PHST- 1996/05/28 00:01 [medline] PHST- 1996/05/28 00:00 [entrez] AID - bi9602270 [pii] AID - 10.1021/bi9602270 [doi] PST - ppublish SO - Biochemistry. 1996 May 28;35(21):6569-84. doi: 10.1021/bi9602270.